
J .  Pluid Mech. (1967), vol. 29, part 2,  pp.  349-359 

Printed in Great Britain 

349 

Hypersonic weak-interaction similarity solutions for 
flow past a flat plate 
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The hypersonic weak-interaction regime for the flow of a viscous, heat-conducting 
compressible fluid past a flat plate is analysed using the Navier-Stokes equations 
as a basis. The fluid is assumed to be a perfect gas having constant specific heats, 
a constant Prandtl number, (r, of order unity, and a viscosity coefficient varying 
as a power, w,  of the absolute temperature. Limiting forms of solutions are studied 
for the free-stream Mach number, M ,  the free-stream Reynolds number (based on 
the plate length), RL, and the reciprocal of the weak-interaction parameter, 
(x*)-l= F ( N ,  RL, w ,  g), greater than order unity. 

By means of matched asymptotic expansions, it is shown that, for (1 - w) > 0, 
the zone between the shock wave and the plate is composed of four distinct regions 
for which similarity exists. The behaviour of the flow in these four regions is 
analysed. 

~ 

1. Introduction 
The proper formulation of the hypersonic weak-interaction theory (HWIT) 

for viscous compressible flow past a flat plate has been a subject of considerable 
interest over the past decade (compare, for example, Kuo 1956; Hayes & Prob- 
stein 1959a, b ;  Freeman & Lam 1959a, b;  Stewartson 1964). The purpose of this 
paper is to review and enlarge upon the existing formulations of the HWIT flat 
plate problem, and, in the process, present the uniformly valid self-similar solu- 
tions for the distinct physical regions which characterize the entire HWIT flow 
field. The presentation is carried out along lines corresponding to those employed 
by Bush (1966) in analysing the hypersonic strong-interaction theory (HSIT) 
flat plate problem. 

In $ 2, the von Mises forms of the Navier-Stokes equations of motion are given. 
In  $3, the analysis of the primary inviscid shock layer, supported by a viscous 

boundary layer with a thickness ratio of O( 6), is presented. This analysis, which 
is just the linearized supersonic flow theory in a modified hypersonic form, closely 
follows those given by Kuo (1956), for his high supersonic flow theory, and 
Stewartson (1964), for his HWIT. 

The linearized theory of Q 3 fails to give the characteristic slope with sufficient 
accuracy for the shock wave to be accommodated within the primary inviscid 
shock layer formulation. The non-uniformity exhibited by the linearized theory 
in the vicinity of the shock wave has long been recognized, with the generally 
accepted technique for the removal of this non-uniformity being the application 
of the co-ordinate straining method of Lighthill (1949) (cf. Van Dyke 1964). 
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Rather than modify the primary inviscid layer analysis through the introduction 
of the method of Lighthill, the present authors, in $4, introduce an additional 
inviscid layer, referred to as the exterior inviscid layer, adjacent to the shock 
wave, which removes the non-uniformity. This formulation follows that of Cole 
(1966) in his treatment of non-steady one-dimensional gasdynamics problems. 
It shows explicitly the difference of the orders of magnitude of the flow quantities 
near the shock front from those in the primary inviscid layer, and, hence, the 
authors believe, provides an important amplification and clarification of the flow 
field picture near the shock as presently provided by the co-ordinate straining 
method. 

In  $5, the HWIT viscous boundary layer formulation is presented in a form 
which parallels that of the HSIT viscous boundary layer formulation of Bush 
(1966). The solutions of the equations for this layer are not presented, but, rather, 
the asymptotic behaviours of the flow quantities near the outer edge of the layer 
are given. The asymptotic behaviours for the case of p N To, w < 1 are given in 
detail, while those for p N T are noted. 

External inviscid layer 

Y - il/Ai)r = O<I@/Af) 
$- (l/Af) x = O(KI/M) 
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FIGURE 1. Schematic diagram of hypersonic weak-interaction layers for flow 
past a flat plate. 

From these asymptotic behaviours, it  is seen that the solutions for the viscous 
boundary layer do not match directly to the solutions for the primary inviscid 
layer. In  $ 6 ,  a viscous transition layer formulation is presented for the case of 
w c 1. It is shown that the solutions of this viscous transition layer match directly 
to both the solutions of the primary inviscid shock layer and those of the viscous 
boundary layer, and, thus, complete a uniformly valid picture of the flow field 
from the plate to the shock wave. 

Hayes & Probstein (1959b) and Freeman & Lam (1959a,b) have indicated 
that, for this weak-interaction problem, there must be a (viscous) transition layer 
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at the outer edge of the hypersonic viscous boundary layer in order to accommo- 
date the large temperature difference between the hot viscous boundary layer and 
the (relatively) cold inviscid shock layer. However, in these 1959 papers, the need 
for the transition layer is presented from the viewpoint of obtaining a correction 
to the viscous boundary layer rather than from the viewpoint of obtaining the 
picture of the entire flow field (extending from the plate out to  the shock wave). 

As in the case of HSIT, the finding of the HWIT solutions for ,u N T (i.e. 
w = 1) represents a special case, one which merits further investigation. 

2. The equations of motion? 
Consider the (two-dimensional) flow of a viscous, compressible gas past a semi- 

infinite flat plate. Let x1 = Lx and y1 = Ly represent the Cartesian co-ordinates 
parallel and normal to the flat plate, respectively, with the origin of this co- 
ordinate system at the leading edge of the plate. The length L is chosen so that 
x is of order unity in the region where the weak-interaction theory is valid. The 
velocity components in the xl- and y,-directions are u1 = u, u, and v1 = u, v, and 
the pressure, temperature, and density are p1 = p a p ,  TI = TmT, and p1 = pap, 
where u,, p,, T,, and pm are the velocity in the x,-direction, pressure, tempera- 
ture, and density in the undisturbed region upstream of the flat plate. 

The gas is assumed to be a perfect one (p = pT), having (i) constant specific 
heats, cvl and cp,, with y = (cpl/cvl), such that (y-  1) = 0(1), (ii) a constant 
Prandtl number of order unity (g = const. = O(l)), and (iii) its ‘normal’ visco- 
sity coefficient proportional to a power, w, of the absolute temperature 

as will be shown to be required in the succeeding analysis), while its ‘bulk’ vis- 
cosity coefficient is taken to be zero, although such an assumption is not necessary. 

The von Mises forms of the Navier-Stokes equations for the flow of such a gas 

(pl = pap = p,TD, with 4 6 w < 1, 

= 
[ P U  7$ [.. (PU & + ($ - pv $)}I + (i-pv 6) 

t To emphasize the parallelism of the present hypersonic weak-interaction theory with 
the hypersonic strong-interaction theory of Bush (1966), the equations of motion of both 
theories are given in the identical form. 



352 William B. Bush and Arthur K .  Cross 

where 5 = x and $ is the stream function, defined by 

while M 2  = (pmu:/ypm), the square of the free-stream Mach number; and 
EL = (pm~&/pm) ,  the Reynolds number. The analysis presented here is for 
M 2  9 1 and RL 9 1. 

(a$/ay) = PU, (all./% = -pv; 

3. The primary inviscid (shock) layer 
According to the existing hypersonic weak-interaction theory for flow past a 

flat plate, at the surface there is a thin, viscous, heat-conducting layer, which 
disturbs the external flow. This layer, whose outer edge is given by y = 6Y,(z) + . . . , 
with 6, the layer's thickness parameter, much less than unity, acts as an effective 
slender 'body', producing a weak oblique (Rankine-Hugoniot) shock wave, 
y = ( 1 / M )  x: + . . . , for X = M 6  < 1, and an inviscid shock layer between the shock 
wave and the 'body'. The analysis of this primary inviscid layer provides the 
starting point for this paper. 

For such an inviscid layer, the flow quantities have the following representa- 
tions (cf. Stewartson 1964; Hayes & Probstein 1959a): 

6 a =  5, $a=Mll.; (3.1) 

(3.2) I u = 1 + (6/M)ua+ ... = 1 + (K/MZ)u,+ ..., 
w = 6wa+ ... = (K/M)v,+ ..., 
p =  l+(MS)pa+ ... = l+Kpa+ ..., 

p = 1+(M6)pa+ ... = l+Kpa+ ..., 
T = l+(MS)Ta+ ... = l+RTa+ ..., 

where f a  =fa(Ea;a, +a) = O ( l ) *  
Substitution of (3.1) and (3.2) into the equations of motion yields, to first 

ava aPa 
~ +- = 0, pa-(pa+Ta) = 0, 
8ll.a %a 

approximation, 

a 0, -- a (Ta-'-'pa) = 0, (3.3) 

%a Y 
where the ratio of the orders of magnitude of the leading viscosity and heat- 
conduction terms, which have been neglected, to those of the inviscid terms, 
which have been retained, is 

(M2/RL) = (M2(1+")/RL82)( S/M")2. 
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With rearrangement, (3.3) becomes 

1 1 

Y Y 
With the ‘body’ boundary condition, 

u, = --P,+Uu(+J, T, = e P , + H , ( @ , ) ,  Pa = p - H u ( @ , ) .  (3.4) 

v,(Eu9O) = YI%,), (3.5) 
thesolutions of (3.4) (cf. Kuo (1956) and Stewartson (1964)) are the following out- 
going simple wave solutions, with T ,  = ([, - +,) : 

%At-,, +,I = - K P a )  + %($u), TU(EU7 $u) = (Y - 1 ) K ( 7 u )  +H,(+,), 
%(Em +u) = YL(T,) = K ( T u ) ,  P U ( L  II.,) = Yv,(7a), 

P U ( L  +u) = v,(Ta) - Hu($u). 

(3.6) 1 
For the case of Yk(t) = 2Ak@ (so that Yi ( [ )  = Ak@), which, in $5, is shown to 
be a requirement for a self-similar flow in the viscous boundary layer, (3.6) 
reduces to 

vu = Pu/Y = -%a+ U U ( @ U )  = (%-Hu(+u))/(Y - 1) = Pa+ Hu(+u) 

= Ak73 (Ak = const.). (3.71-t 

To evaluate the functions Uu(@u) and H,(+,), (3.6) and/or (3.7) must be studied 
in the vicinity of the shock wave, where ru + 0, i.e. $, -+ 6,. However, it  can be 
shown that the solutions, v,, pu, etc., exhibit a singular behaviour as T , + O .  
Hence, in order to remove this singularity and develop a solution uniformly valid 
from the shock wave to the plate, a thin exterior inviscid layer is introduced 
spanning the distance between the primary inviscid layer and the Rankine- 
Hugoniot shock. 

4. The exterior inviscid layer 
The weak-interaction shock relations are now considered. The shock wave in 

the weak-interaction limit ( M  3 00, M 8  = K +- 0) corresponds to a small disturb- 
ance (of a magnitude to be determined) on a Mach wave. Thus, in this limit, if the 
shock shape and the shock stream function are given by 

(4.1) i 
Ysh(4 = ( 1 / W  [X+KfP(X)+ ... I, 
$sh(E) = (1/M) “ + KfP(5) + -. -1, 

li, = undetermined parameter < 1, 

then the flow quantities at the downstream side of the shock are 

(1 --%,)I(Kf/Jf2) = VS,/(Kf/J4 = (Psh- 1)lYKf = (Tsh-  1)/(r- 1)Kf 

= (Psh- 1)Ff = {4/(Y+ l)}S’([)+ a * . *  (4.3) 

(Note: (p/pr)sh = 1 -f- o(K;), 7sh  = {g -M$&(~)}  = -KfF(C) 

of the form 

.-*.) 

t The solutions of (3.7), for U, = Ha = 0, may be considered to  be self-similar solutions 

va = ZJ~/Y = - u a  = Ta/(?- l )  = pa = Aktih-6(1-Q)-*, 6 = ($aa/L;a). 

23 Fluid Meoh. 29 
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The forms of the solutions of (3.6) and (3.7) and the shock relations of (4.1) and 
(4.3) suggest that the proper representations for the flow quantities in this layer 
adjacent to the shock front are 

@f = M@, Tf = (6- M W K f ,  (4.3) 

} (4.4) 
u = 1 + ( K f / M 2 ) ~ f +  ..., v = ( K f / M ) v f +  ..., p = 1 + K f p f +  ..., 

T = 1 + KfT’+ ..., p = 1 + K f p f +  ..., 
where f f  = f f  ( @ f ,  T ~ )  = O( 1). The shock relations for these representations are 

@fish = - (Uflsh = (Pf)sh  = (Pf)sh/Y = (Tf)sh/(Y- 1) = {4/(Y+ 1)P’(6) ,  (4.5) 

where (&Sh = f f G  - F(6)) .  
Following Cole (1966)t, a ‘Riemann invariant’ formulation of the equations 

of motion for this layer yields: 

Applyingithe shock relations, (4.5) to (4.6), it follows that 

Pf/Y = Pf = -uf = T,/(Y- 1) = V f ,  

where the governing equation for vf is 

The general solution of (4.8) is 

7 f  = Gf(@f)--*(Y+WfVf .  

However, the assumption of a self-similar solution, with the variables 

W f  = @y-lwcf), Cf = ( T f M ) ,  (4.9) 

reduces (4.8) to the ordinary differential equation 

MY+ l ,vf+74fl Zf dTif+ (1 - m ) c  = 0. (4.10) 

The solution of this equation, in terms of the original variables, is 

(4.11) 

(Note that the first term in (4.11) represents the restricted similarity form of the 
function Gf(vf)  in the general solution of (4.81.) 

That the solutions of (4.7), as defined by (4.11), can be matched to the special 
solutions, 7, = (Ak/wJ2, etc., of (3.7) (thus removing the singular behaviour of 
the primary inviscid layer solutions near the shock wave) is now demonstrated. 

Cole’s work is carried out for the non-steady one-dimensional inviscid flow problem 
and applies to the present analysis by virtue of the ‘law of plane sections’. 
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so that the matching of the two sets of solutions takes place as v,-+co, and 
vf + O,$u  = $f = fixed. For the primary inviscid layer, then, 

7 = E-M$ = t,-$u = r, = Ag(K/Hpufvuf)2+ ..., (4.12a) 

while, for the exterior inviscid layer, 

r = e-  M$ = Kfrf  = Kf[Jf(Kf/M/3ufvuf)m'(1-m) - ikkJ + 1 )  $f (MPuf "uf / K f )  + * - -1 - 
(4.12b) 

m = $, Kf  = Kp K ,  += A;.  (4.13) 

Evaluating (4.11) at the shock, by means of (4.5) and (4.13), yields the follow- 

(4.14) 

Examination of (4.12) reveals that the matching is accomplished if 

A corollary of the above matching is that U,($J = I&($,) = 0. 

ing equation to be satisfied by the perturbation shock shape, F ( [ ) :  

-F(8 = {(Y+ ' 1  A k / 4 } 2  {F'(6)}-2- 2cF'(8- 
The solution of this equation is 

F(c)  = NY+ 1 ) A k ) W  (4.15) 

Hence, the shock shape, consistent with a viscous boundary layer whose outer 
edge is given by y = 6 ( 2 & d ) +  ..., is 

Ynh(X) = ( 1 / H ) [ z + K * $ { ( y +  1)Ak)'%'+ ...I. (4.16) 

This result is compatible with that obtained by Kuo (1956). It has also been 
qualitatively verified by the experiments of Kendall (1957). 

5. The viscous boundary layer 
Theviscous boundary layer (next to the plate), a high temperature, low density 

region, across which the pressure is constant, is examined next. Prom the solu- 
tions of the primary inviscid layer as $u + 0 given in § 3, at the outer edge of this 
viscous layer, it  is expected that the flow quantities have the behaviour u-+ 1 ,  
T / M 2 + 0 ,  v+6YL(c), p + l .  

The analysis of this region is carried out in the distorted co-ordinates 

c k  = E? $k = ( M 2 / 6 ) $ ,  (5.1) 
and the expansions of the flow quantities have the form 

} (5.21 
u = u k +  ..., v = 6Uk-k s.., 

T = (M2)Tk+ ..., $l= 1+(H6)$lk+ ..., p = ( l / & f 2 ) ( 1 / T k ) +  ..., 
with fk = f k ( [ k ,  $k) = O( ) *  

For these representations, the leading terms in the equations of motion are 

23-2 
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To retain the viscosity and heat-conduction terms, it is necessary that the 
quantity (MZ(l+")/RL d2) = h may be of order unity, so that 

6 = (M2(1+")/RLh)*+0. (5.4) 

I M 2 + W I R i  < 1, (5.5) 

Combining (5.4) with the weak-interaction inequality K = M 8  << 1 yields 

which is a generalization of the usual criterion for weak interaction, namely that 
the interaction parameter, x = ( M 3 / R t )  for w = 1, be much less than unity. 

If the outer edge of the boundary layer is taken to be a power-law body of the 
form y = d y k ( x )  + ... = d(Akx"/n) + ..., 
so that wa(.&, 0)  = pa(&, O)/y = AkE;(l-"), (5.3), su.bject to the boundary condi- 
tions at the outer edge, 

may be reduced to a system of ordinary differential equations if 

U k +  1, Tk+o, Vk+Ak&(l-"), pk-+'yAk&(l-n) as $kJm, (5.6)  

n = J -  
2'  

For n = &, taking the independent variables to be 

ti, Ck = $ k / E k  

and taking the dependent variables to be 

(5.7) 

the continuity, momentum, and energy equations become 

(5.10) 1 
The boundary conditions for these equations at  the outer edge and at the wall, 
respectively, are 

Uk+l,  Hk+O, &-+A,, as &+a, 
Uk-+O, Hk-+H&, =i= 0, &-to,  as &+O. (5.11) 

(Note: from the continuity equation of (5.10) and the boundary conditions of 
(5.11), it  can be seen that 

Ah = ;so" (HklUk)dCk:k:, 

where U, and Hk are determined from the coupled momentum and energy equa- 
tions of (5.10).) 

Apart from finding the complete solutions of the above equations (compare, 
for example, Dewey 1963), since Hk-+ 0 and Uk -+ 1 as Ck +a, consider the follow- 
ing asymptotic expansions for Hk and u k  as Ck -+ co: 

(5.12) 
Hk = C k C K r k +  ..., uk = 1 + D k < i 5 k +  ..., 
ck,Dk = COnStS., ?'k,Sk = COnStS. > 0. 
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Substitution of these expansions into the momentum and energy equations of 
(5.10) produces the results that, for (1 - w )  > 0, 

(5.13) 

2 
1 - w ’  

Tk = - 

s k =  [l+k(s)] = r k [ l + ( G )  (?)I, D,=undetermined. 

(Note: the coefficient D, depends on the complete solution of the similarity 
boundary layer equations, and, in particular, upon the boundary conditions at 
the wall. For example, for the case of CT = 1, it is easily verified that 

Dk = - 2C,/{(Y - 1) +2Hk,W) . )  

Therefore, near the outer edge of the boundary layer ($,+a, [, fixed), Tk 

(5.14) 

Since this functional form for the temperature as ?+kk-+co is incompatible with 
that given by (3.6) as $,-to, it is evident that a transition layer must be intro- 
duced to ensure a uniformly valid solution for the temperature from the shock 
wave to the plate. Corresponding arguments apply to the solutions for the longi- 
tudinal velocity. 

(Note: for w = 1 ,  near the outer edge of the boundary layer, T, exhibits the 
behaviour T, = (const.) ($,/&-lexp ( - ~T$;/~A[J + .... 
Hence, for this case, the temperature goes to zero exponentially, rather than 
algebraically, as is true for (1 - w )  > 0, and there is no way to match directly to 
this exponential decay. Further discussion of this problem is given in Bush 
(1966).) 

exhibits the behaviour 

T’ = Ck ciKl-4 $K W-4 + ... [(1-w) > 01. 

6. The viscous transition layer 
A viscous transition layer, intermediate to the primary inviscid layer and the 

viscous boundary layer, is introduced to permit uniformly valid solutions for the 
temperature and longitudinal velocity. For this transition layer, the distorted 
co-ordinates and flow variable expansions are taken to be 

!!t = 6, $4 = $154, SIN2 < $4 < 11M; (6.1) 
u = (l+Cctut+ ...)+( G/M)u!,+ ..., ( S / M )  < at< 1,) 

2, = 6vt+ ..., 
T= (T,+ ...)+( M6)St+ ..., (6.2) I 
p = l+(MS)pt+ ..., p = (l/Tt)+ ..., 

where f t  = fkt, $t) = O(1). 
To match to the primary inviscid layer, it is necessary that 

ut+0, Tp-1 ,  Vt+Ak[,f, pt+yAk[,B as $t-+cO. ( 6 . 3 ~ )  

To match to the viscous boundary layer, it is necessary that 
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The leading terms in the equations of motion, based on these co-ordinates and 
expansions, are, for (q5JS) -+ 0, 

I 

Retention of the shear and heat-conduction terms requires that 

That (M2(l+o)/RLS2) = h = O(1) was required in $5. That (M1+oq5,/S) = O(1) = 1 
remains to be demonstrated. However, if (M1+"q5,/6) = 1, then it is true that 
(q$/S) = IK-Cl*)--+ 0, which was postulated in deriving (6.4). 

The existence of self-similar solutions for the temperature and longitudinal 
velocity is now examined. If ut and Ti have the forms 

Ut = W t ) ,  Tt = 4 ( C t ) 9  where Cf = $t/& (6.6) 

the longitudinal momentum and energy equations of (6.4) may be reduced to the 
following similarity forms: 

Since H, and U,+w as &+O,  in order to match with the viscous boundary 
layer, consider the following asymptotic expansions: 

(6.8) 
H ,  = c, c p  + . . . , q = Dt C p  + . . . , 

C,,Dt = consts., r,, st = consts. > 0. 

Substitution of these expansions into (6.7) produces the results that, for 
(1-w) > 0, 

rt = r , =  2/(1-w), 

(6.9) 
st = sk = [ 1 + (z)] , Dt = undetermined. 

From (5.12), (5.13) and (6.8), (6.9): (i) there is temperature matching at the 
transition layer/boundary layer 'interface ' if 

(M1+oq5,/S) = 1, i.e. S/M2 4 q5t = S/M1+" 4 l/M, (6.10 a)  
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which is exactly the relation that was required for the retention of the shear and 
heat-conduction terms in the transition layer equations; (ii) there is longitudinal 
velocity matching at this ‘interface’ if 

Dt = D,, at = M-2Sk/Tk.  (6.10 b )  

The above value for a, combined with the condition of (6.2) that at be much 

< Jf2a, = Jf2(1--(skl%)} = M-q, Q = (1 + w )  ( T) . 
greater than ( 6 / M )  leads to the requirement 

(6.11) 

For -a = 1, (6.11) reduces to the usual weak-interaction inequality, K < 1. How- 
ever, for -a < l, (6.11) becomes K < M-P < l, a more severe restriction than the 
above. Thus, for -a < 1, ( 5 4 ,  the condition for hypersonic weak-interaction 
theory validity, must be modified to 

x * - - (  M~1+[Cl+d/dI /~~)  < 1. 

1--a 

(6.12) 

With respect to the transition layerlprimary inviscid-layer ‘interface ’, the 
solutions of (6.7), as &+co, are 

(6.13) 
V, = (const.) erfc (&/2ht) + . . . + 0, 

H f  = 1 + (const.) erfc (-a*Q/2h+) + ... -+ 1. 

Hence, the transition layer solutions join smoothly to those of the primary in- 
viscid layer to the order considered. 

} 

(Note: the thickness of the transition layer is of O(q3,) = O(S/M1+@) < 6.) 
The authors would like to express their thanks to Drs J. D. Cole and M. D. Van 

Dyke for their helpful suggestions and kind advice during the preparation of this 
paper. 

REFERENCES 

BUSH, W. B. 1966 J .  Fluid Mech. 25, 51. 
COLE, J. D. 1966 Private communication. 
DEWEY, C. F. 1963 A I A A  J. 1, 20. 
FREEMAN, N. C. & Lm, S.  H. 1959a Princeton UrViv. Dep. Aero. Engng. Rep. no. 468. 
FREEMAN, N. C. & LAM, S. H. 1959b Princeton UrViv. Dep. Aero. Engng. Rep. no. 471. 
a m s ,  W. D. & PROBSTEIN, R. F. 1959a Hypersonic Flow Theory. New York: Academic 

Press. 
=YES, W. D. & PROBSTEIN, R. F. 19593 J. Aero. Sci. 26, 815. 
KENDALL, J. M. 1957 J .  AeroSci. 24, 47. 
Kuo, Y .  H. 1956 J .  Aero Sci. 23, 125. 
LIGHTHILL, M. J. 1949 Philos. Mag. 40, 1179. 
STEWARTSON, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. 

London : Oxford University Press. 
VAN DYEE, M. D. 1964 Perturbation Methods in  Fluid Mechanics. New York: Academic 

Press. 


